skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Dongdong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available December 16, 2025
  3. https://proceedings.neurips.cc/paper_files/paper/2024/hash/06477eb61ea6b85c6608d42a222462df-Abstract-Datasets_and_Benchmarks_Track.html 
    more » « less
  4. Solar power is a critical source of renewable energy, offering significant potential to lower greenhouse gas emissions and mitigate climate change. However, the cloud induced-variability of solar radiation reaching the earth’s surface presents a challenge for integrating solar power into the grid (e.g., storage and backup management). The new generation of geostationary satellites such as GOES-16 has become an important data source for large-scale and high temporal frequency solar radiation forecasting. However, no machine-learning-ready dataset has integrated geostationary satellite data with fine-grained solar radiation information to support forecasting model development and benchmarking with consistent metrics. We present SolarCube, a new ML-ready benchmark dataset for solar radiation forecasting. SolarCube covers 19 study areas distributed over multiple continents: North America, South America, Asia, and Oceania. The dataset supports short (i.e., 30 minutes to 6 hours) and long-term (i.e., day-ahead or longer) solar radiation forecasting at both point-level (i.e., specific locations of monitoring stations) and area-level, by processing and integrating data from multiple sources, including geostationary satellite images, physics-derived solar radiation, and ground station observations from different monitoring networks over the globe. We also evaluated a set of forecasting models for point- and image-based time-series data to develop performance benchmarks under different testing scenarios. The dataset is available at https://doi.org/10.5281/zenodo.11498739. A Python library is available to conveniently generate different variations of the dataset based on user needs, along with baseline models at https://github.com/Ruohan-Li/SolarCube. 
    more » « less
  5. null (Ed.)